We are independent & ad-supported. We may earn a commission for purchases made through our links.

Advertiser Disclosure

Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.

How We Make Money

We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently from our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What is a Disk Brake?

Dan Cavallari
By Dan Cavallari
Updated May 17, 2024
Our promise to you
WiseGEEK is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At WiseGEEK, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

Though many systems for slowing down a wheel on a vehicle have been designed and implemented over the course of more than a century, no design is more prevalent today than the disk brake. A disk brake system uses a rotor, usually made of composite materials such as iron, ceramic, carbon, and Kevlar®, that is fixed to a wheel and slowed using a caliper that forces brake pads to contact the disk from both sides simultaneously. Disk brake systems are used extensively on automobiles, motorcycles, bicycles, and other gas-powered and human-powered vehicles.

Disk brakes were developed as early as the late nineteenth century, but design flaws kept disk brake systems from entering mainstream use. The most difficult problem to overcome was heat transfer, or the disk's inability to distribute friction heat effectively. This problem was called brake fade and was quite prevalent on early models of disk brakes. Further, because roads around that time were primitive and unpaved, dirt and dust often came in contact with the disk brake system, reducing the power and effectiveness of the brake and often leading to premature wear of the individual components.

These problems were eventually solved by using composite materials that distributed heat more effectively and were less susceptible to quick wear. Other methods of solving the heat and dirt problems included drilling holes in the rotor itself, which allowed heat to disperse more effectively and dirt and grit to pass through without affecting the performance of the brake to a great degree.

In order to actuate the brake pads and make them press against the rotor with significant strength to slow the wheel, several methods have been developed. Cable actuated levers are common on bicycles, where massive amounts of force are not needed to slow the vehicle. On automobiles, motorcycles, and even many bicycles, hydraulic systems are employed to transfer power from the brake lever or pedal to the brake caliper. These hydraulic disk brake systems use a viscous liquid, usually an oil or other thick fluid, contained in lines rigid enough to contain the force of the moving liquid. When the brake lever or pedal is actuated, the oil or fluid is forced into the brake caliper, which in turn uses a series of pistons to thrust the pads against the rotor. Other systems of actuation include pneumatic systems and electromagnetic systems, both of which tend to be more complex but just as effective.

WiseGEEK is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.

Discussion Comments

WiseGEEK, in your inbox

Our latest articles, guides, and more, delivered daily.

WiseGEEK, in your inbox

Our latest articles, guides, and more, delivered daily.